

1465.

15. Pascual, C., Fernandez, P., Garcia-Alvarez, M. C., Hueso-Rodriguez, J. A., Rodriguez, B., Bruno, M., Paternostro, M., Piozzi, F. and Savona, G. (1986) *Phytochemistry* **25**, 715.
16. Gács-Baitz, E., Papanov, G. Y., Malakov, P. Y. and Szilágyi, L. (1987) *Phytochemistry* (in press).
17. Malakov, P. Y., Papanov, G. Y., Mollov, N. M. and Spassov, S. L. (1978) *Trav. Sci. Univ. Plovdiv (Chimie)* **16**, 215.

Phytochemistry, Vol. 27, No. 1, pp. 297-299, 1988.
Printed in Great Britain.

0031-9422/88 \$3.00 + 0.00
Pergamon Journals Ltd.

TRITERPENOID FROM *AGRIMONIA PILOSA*

ISAO KOUNO, NAOSUKE BABA, YUMIKO OHNI and NOBUSUKE KAWANO*

Faculty of Pharmaceutical Sciences, Nagasaki University, Bunkyo-machi 1-14, 852 Nagasaki, Japan

(Received 31 March 1987)

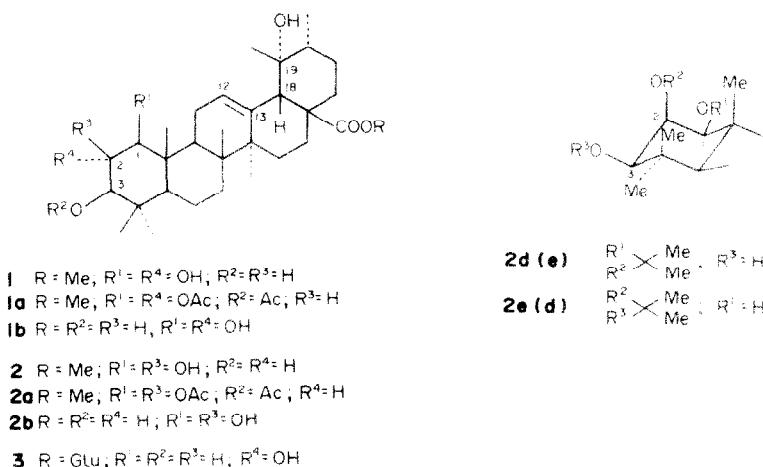
Key Word Index—*Agrimonia pilosa*; Rosaceae; triterpenoid; 19 α -hydroxyursolic acid.

Abstract—Two new triterpenoids have been isolated as a methylester from the whole plant of *Agrimonia pilosa*, along with 2 α ,19 α -dihydroxyursolic acid (28-1) β -D-glucopyranoside from the roots of this plant. On the basis of chemical and spectral evidence, the structures were established as 1 β ,2 α ,3 β ,19 α -tetrahydroxyurs-12-en-28-oic acid and 1 β ,2 β ,3 β ,19 α -tetrahydroxyurs-12-en-28-oic acid.

INTRODUCTION

Agrimonia pilosa Ledeb is widely distributed in Asia. The chemical components of this plant have been extensively examined and agrimonolide [1], luteolin 7-O- β -D-glucoside, apigenin 7-O- β -D-glucoside [2, 3], agrimol A, B and D [4], agrimophol [5] and tannins [6, 7] were obtained. The antitumour activity of the extracts from the roots of this plant was also reported [8]. We report now on the constituents of *Agrimonia pilosa*.

RESULTS AND DISCUSSION


The methanol extract of the aerial parts of *A. pilosa* was fractioned by the usual procedure (Experimental) to afford a triterpenoid fraction. This was treated with diazomethane in methanol because of the difficulty of separation, and compounds **1** (45 mg) and **2** (112 mg) were isolated. The ^1H NMR spectrum of compound **1** $\text{C}_{31}\text{H}_{50}\text{O}_6$ (EIMS, *m/z* 518) showed the characteristic broad singlet at δ 2.57, together with the tertiary methyl [δ 0.68, 0.83, 1.02 (2Me), 1.22 (2Me)], the secondary methyl (0.94, *d*, *J* = 6.4 Hz), the ester methyl (3.60) and the olefinic (5.35, *t*, *J* = 3.4 Hz) protons, all of which suggested a 19 α -hydroxyurs-12-en type of triterpenoid. The olefinic carbon signals (δ 130.0, C-12; 137.3, C-13) in the ^{13}C NMR spectrum of **1** also indicated that **1** had an urs-12-en skeleton [9]. Although the hydroxy methine protons were not obvious in the ^1H NMR spectrum of **1**, an

acetate (**1a**) of **1** showed the signals of three acetoxy and three acetoxy methine groups. The latter of which exhibited two doublets (δ 4.79, *J* = 10.6 Hz; 4.88, *J* = 9.3 Hz) and a double doublet (δ 5.22, *J* = 10.6 and 9.3 Hz), and were assignable to C-1 (or 3), C-3 (or 1) and C-2, respectively. Three hydroxy methine carbons were also indicated in the ^{13}C NMR spectrum of **1** (δ 74.6, 74.9, 79.9). As the *J*-values of these signals indicated trans-diaxial correlated protons, the three acetoxy must be equatorial. It was concluded that compound **1** was 1 β ,2 α ,3 β ,19 α -tetrahydroxyurs-12-en-28-oate, and that the natural compound should be originally 1 β ,2 α ,3 β ,19 α -tetrahydroxyurs-12-en-28-oic acid (**1b**).

The ^1H NMR spectrum of compound **2** ($\text{C}_{31}\text{H}_{50}\text{O}_6$; EIMS, *m/z* 518) showed a broad singlet at δ 2.59 similar to that of **1**. As the other signals of the ^1H NMR and the ^{13}C NMR spectra of **2** were quite similar to those of **1**, compound **2** was considered to possess the same skeleton as **1**. An acetate (**2a**) of **2** showed in the ^1H NMR spectrum the signals of three acetoxy and three acetoxy methine protons. These methine protons appeared at δ 4.70 (*d*, *J* = 3.7 Hz, C-1 or 3), 4.75 (*d*, *J* = 3.7 Hz, C-3 or 1) and 5.44 (*t*, *J* = 3.7 Hz, C-2) compared to those of **1**, and these coupling constants were accommodated on an axial-equatorial-axial correlation for these protons. These findings indicated **2** is 1 β ,2 β ,3 β ,19 α -tetrahydroxyurs-12-en-28-oate, and that the naturally occurring compound should be 1 β ,2 β ,3 β ,19 α -tetrahydroxyurs-12-en-28-oic acid (**2b**).

An acetonide reaction of **2** with acetone and *p*-toluene sulphonic acid yielded two compounds **2d** and **2e** (trace), although the same reaction for **1** gave only the starting

*Author to whom correspondence should be addressed.

material. These results supported the *cis*-relationships of the three hydroxy groups at C-1, C-2 and C-3 for **2** and the *trans*-relationship for **1**.

The methanol extract of the roots of *A. pilosa* was separated, as described in the Experimental, to give **1** (240 mg), **2** (15 mg) and **3** (250 mg). All the chemical and spectral evidences of **1** and **2** were identical with the above data. It is noteworthy that the quantities of these compounds were reversed from those of aerial parts.

The ¹H NMR and ¹³C NMR spectra of compound **3**, C₃₆H₅₈O₁₀ (FABMS, m/z 673 [M + Na]⁺, suggested a triterpenoic acid sugar ester structure for **3**, and they were completely identical with the data of rosamultin (2 α ,19 α -dihydroxyursolic acid (28-1) β -D-glucoside) which was obtained from *Rosa multiflora* [10].

EXPERIMENTAL

The NMR spectra were measured in CDCl₃ at 90 MHz for the ¹H NMR and 22.5 MHz for the ¹³C NMR unless otherwise specified. Chemical shifts are given on the δ (ppm) scale with TMS as int. standard. IR were taken in CHCl₃.

Extraction and isolation. The plant material was collected near Nagasaki (Japan) during the summer of 1986, and divided into the aerial parts and the roots. The air-dried aerial parts (1.5 kg) were extracted with MeOH to give the MeOH extract (270 g), and partitioned between *n*-hexane-H₂O and EtOAc-H₂O successively. The EtOAc soluble part (48 g) was partitioned again with CHCl₃-MeOH-H₂O (7:3:1) to afford a lower phase (17 g), which was separated by silica gel CC to give a triterpenoid fraction. This fraction was passed through an LH-20 column (eluted with MeOH) and the greenish soln was treated with a soln of CH₂N₂ in Et₂O and then evapd. The gum obtained was chromatographed repeatedly on silica gel using a solvent system of CHCl₃-MeOH to yield compounds **1** (45 mg) and **2** (112 mg).

Compound 1. White amorphous powder. $[\alpha]_D^{25} + 32.2$ (CHCl₃, c 0.9). IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm⁻¹: 3400, 1712, 1520. EIMS m/z: 518 [M⁺]. HRMS found: 518.371; C₃₁H₅₆O₆ requires 518.360. ¹H NMR: δ 0.68, 0.83 (each s, 3H), 0.94 (*td*, *J* = 6.4 Hz, 3H, H-30), 1.02 (s, 6H), 1.22 (s, 6H), 2.57 (*br s*, 1H, H-18), 3.0-3.6 (*br m*, 3H, H-1, 2, 3), 3.60 (s, 3H, -OMe), 5.35 (*t*, *J* = 3.4 Hz, 1H, H-12); ¹³C NMR: δ : 11.4 (*q*, C-25), 16.1m, 16.9, 17.1 (each *q*, C-24 and/or 26 and/or 30), 17.9 (*t*, C-6), 24.5 (*t*, C-11), 25.6 (*q*, C-27), 26.1 (*t*, C-16), 27.0 (*t*, C-21), 27.4 (*q*, C-29), 28.3 (*q*, C-23), 29.8 (*t*, C-15), 32.8 (*t*, C-7), 37.4 (*s*, C-10), 38.1 (*t*, C-22), 40.6 (*s*, C-4), 41.2 (*t*, 2C, C-8, 14), 42.9 (*d*, C-20), 48.0 (*d*, C-9), 48.5 (*s*, C-17), 51.5 (*q*, COOME), 52.6 (*d*, C-18), 53.2 (*d*, C-5), 73.2 (*s*, C-19), 74.7, 77.0 (each *d*, C-1 and/or 2), 79.9 (*d*, C-3), 130.1 (*d*, C-12), 137.2 (*s*, C-13), 178.4 (*s*, C-28).

53.2 (*d*, C-5), 73.2 (*s*, C-19), 74.6, 74.9 (each *d*, C-1 and/or 2), 79.9 (*d*, C-3), 130.0 (*d*, C-12), 137.3 (*s*, C-13), 178.3 (*s*, C-28).

Compound 2. White amorphous powder. $[\alpha]_D^{25} + 30.0$ (CHCl₃, c 0.5). IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm⁻¹: 3500, 1735, 1520, 1370. EIMS m/z: 518 [M⁺]. HRMS found: 518.364; C₃₁H₅₆O₆ requires 518.360. ¹H NMR δ 0.94 (*d*, *J* = 6.2 Hz, 3H, H-30), 0.70, 0.97, 0.99, 1.91, 1.21, 1.25 (each *s*, 3H), 2.59 (*br s*, 1H, H-18), 3.22, 3.31, 4.03 (each *br s*, 1H, H-1, 2, 3), 3.60 (s, 3H, -OMe), 5.38 (*t*, *J* = 3.6 Hz, H-12); ¹³C NMR δ 11.4 (*q*, C-25), 16.1, 16.9, 17.1 (each *q*, C-24 and/or 26 and/or 30), 17.9 (*t*, C-6), 24.6 (*t*, C-11), 25.6 (*q*, C-27), 26.1 (*t*, C-16), 26.9 (*t*, C-21), 27.4 (*q*, C-29), 28.3 (*q*, C-23), 29.8 (*t*, C-15), 32.8 (*t*, C-7), 37.4 (*s*, C-10), 38.1 (*t*, C-22), 40.6 (*s*, C-4), 41.2 (*s*, 2C, C-8, 14), 42.9 (*d*, C-20), 48.0 (*d*, C-9), 48.5 (*s*, C-17), 51.5 (*q*, COOME), 52.6 (*d*, C-18), 53.2 (*d*, C-5), 73.2 (*s*, C-19), 74.7, 77.0 (each *d*, C-1 and/or 2), 79.9 (*d*, C-3), 130.1 (*d*, C-12), 137.2 (*s*, C-13), 178.4 (*s*, C-28).

The dried roots (1 kg) extracted with MeOH to give the MeOH extract, which was partitioned between Et₂O-H₂O and EtOAc-H₂O successively. The EtOAc soluble part (13 g) was chromatographed on silica gel column using a solvent system of CHCl₃-MeOH to give a triterpenoid and a triterpene glycoside fraction, respectively. The former was treated with CH₂N₂ as described above, and successive chromatography on silica gel gave compounds **1** (240 mg) and **2** (15 mg). The latter was passed through LH-20 column (MeOH) and chromatographed repeatedly on silica gel to afford **3** (250 mg).

Compound 3. Colourless needles, mp 206-208. $[\alpha]_D^{25} = +10$ (EtOH, c 1.0). FABMS m/z: 673 [M + Na]⁺; ¹³C NMR, δ 178.5 (*s*, C-28), 139.5 (*s*, C-13), 129.5 (*d*, C-12), 95.7 (*d*, anomeric carbon C-1), 84.5 (*s*, C-19), 78.4 (*d*, C-5), 78.3 (*d*, C-3), 73.8 (*d*, C-3), 73.6 (*d*, C-2'), 71.2 (*d*, C-4), 69.5 (*d*, C-2), 62.5 (*t*, C-6'). All the data is consistent with that of rosamultin [10].

Triacetate (1a) of compound 1. Prepared by treatment of **1** with Ac₂O-pyridine. Colourless oil. $[\alpha]_D^{25} + 31.0$ (CHCl₃, c 0.6). IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm⁻¹: 3500, 1730, 1520. EIMS m/z: 644 [M⁺]. ¹H NMR: δ 0.65, 0.89, 0.95 (each *s*, 3H), 0.92 (*d*, *J* = 5.1 Hz, 3H, H-30), 1.18, (s, 6H), 1.22 (s, 3H), 1.95, 1.98, 2.02 (each *s*, 3H, -OAc \times 3), 2.55 (*br s*, 1H, H-18), 3.59 (s, 3H, -COOME), 4.79 (*d*, *J* = 10.6 Hz, H-1 or 3), 4.88 (*d*, *J* = 9.3 Hz, H-3 or 1), 5.22 (*dd*, *J* = 9.3 and 10.6 Hz, 1H, H-2), 5.30 (*t*, *J* = 3.4 Hz, 1H, H-12).

Triacetate (2a) of Compound 2. Prepared by treatment of **2** with Ac₂O-pyridine. Colourless oil. $[\alpha]_D^{25} + 29.1$ (CHCl₃, c 0.5). IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm⁻¹: 3500, 1730, 1520. EIMS m/z: 644 [M⁺]. ¹H NMR: δ 0.69, 0.90 (each *s*, 3H), 0.93 (*d*, *J* = 6.4, 3H, H-30), 1.07, 1.18, 1.21, 1.30 (each *s*, 3H), 1.99, 2.02, 2.08 (each *s*, 3H, -OAc \times 3), 2.55 (*br s*, 3H, H-18), 3.59 (s, 3H, -COOME), 4.70, 4.75 (each *d*, *J* = 3.7 Hz, 1H, H-1 and/or 3), 5.26 (*t*, *J* = 3.6 Hz, 1H, H-12), 5.44 (*t*, *J* = 3.7 Hz, 1H, H-2).

Acetonide (2d) of Compound 2. Prepared by treatment of 2 with Me_2CO , *p*-toluenesulphonic acid. Colourless oil. EIMS m/z : 558 [M^+]. ^1H NMR (400 MHz): δ 0.73, 0.94 (each s, 3H), 0.95 (*d*, *J* = 6.5 Hz), 1.01, 1.16, 1.23, 1.27 (each s, 3H), 1.39, 1.51 (each s, 3H, Acetonide diMe), 2.61 (s, 1H, H-18), 3.60 (s, 3H, -COOME), 3.58 (*d*, *J* = 4.1 Hz, 1H, H-1 or 3), 3.87 (*d*, *J* = 7.7 Hz, 1H, H-3 or 1), 4.18 (*dd*, *J* = 4.1, 7.7 Hz, 1H, H-2), 5.40 (*br s* 1H, H-12). Another acetonide (2e) was detected by TLC but not identified with the spectral data.

REFERENCES

1. Yamato, M. (1985) *Yakugaku Zasshi* **78**, 1086.
2. Kimura, Y., Takido, M. and Yamanouchi, S. (1968) *Yakugaku Zasshi* **88**, 1355.
3. Su, G., Su, S. and Zhu, T. (1984) *Shenyang Yaoxueyuan Xuebao* **1**, 44.
4. Cheng, C., Chu, T., Wang, H., Huang, P. and Chin, K. (1978) *Hua Hsueh Hsueh Pao* **36**, 35.
5. Sha, S. (1980) *Yao Hsueh Tung Pao* **15**, 6.
6. Okuda, T., Yoshida, T., Kuwahara, M., Memon, M. and Shingu, T. (1982) *J. Chem. Soc., Chem. Commun.* 163.
7. Okuda, T., Yoshida, T., Kuwahara, M., Memon, M. and Shingu, T. (1984) *Chem. Pharm. Bull.* **32**, 2165.
8. Miyamoto, K., Koshiura, R., Ikeya, Y. and Taguchi, H. (1985) *Chem. Pharm. Bull.* **33**, 3977.
9. Doddrell, D. M., Khong, P. W. and Lemis, K. G. (1974) *Tetrahedron Letters* 2381.
10. Du, H., Zhao, X. and Zhao, S. (1983) *Yaoxue Xuebao* **18**, 314.

Phytochemistry, Vol. 27, No. 1, pp. 299–301, 1988.
Printed in Great Britain.

0031-9422/88 \$3.00 + 0.00
© 1988 Pergamon Journals Ltd.

TRITERPENOID FROM *SALVIA PRZEWALSKII*

NING WANG, MASATAKE NIWA* and HOU-WEI LUO

Nanjing College of Pharmacy, Nanjing, China; *Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468, Japan

(Revised received 15 April 1987)

Key Word Index—*Salvia przewalskii*; Labiate; triterpenoids; przewanoic acid A; przewanoic acid B.

Abstract—Oleanolic acid and two novel triterpenoids, przewanoic acid A and przewanoic acid B, were isolated from the dried roots of *Salvia przewalskii*. Their structures were elucidated on the basis of chemical and spectral methods.

INTRODUCTION

The Tibetan folk drug 'Hong Qin Jiao' is the dried roots of *Salvia przewalskii* Maxim, which is widely distributed in the western areas of China [1–3]. It has been reported that its main chemical components are the *O*-naphthaquinone diterpenes [4, 5]. The present paper describes the isolation and elucidation of two novel triterpenoids, przewanoic acid A and przewanoic acid B, along with a known triterpenoid, oleanolic acid.

RESULTS AND DISCUSSION

Przewanoic acid A (**1**), white needles, mp 269–270°, $[\alpha]_D + 125^\circ$ had the molecular formula $\text{C}_{30}\text{H}_{46}\text{O}_4$. Its UV spectrum $\lambda_{\text{max}}^{\text{MeOH}}$ 211 nm ($\log \varepsilon 3.65$) showed the probable presence of a double bond conjugated cyclopropane [6]. The ^1H NMR spectrum showed the presence of six methyl groups in agreement with the ^{13}C NMR spectral data (δ 17.5, 17.5, 22.2, 22.8, 29.5, 32.6; Table 1). Also the ^1H NMR spectrum revealed one allylic hydrogen and two secondary hydroxyls. The signal at high field (-0.08 , *dd*, 1H, *J* = 4.8, 4.8 Hz) is characteristic of the CH_2 in a cyclopropane [6, 7].

The coupling relationships of related protons were assigned from the comparative study of the ^1H – ^1H 2D COSY data. The signals at 5.82 (*dd*, 1H, *J* = 7.2, 3.6 Hz), 2.79 (*dd*, 1H, *J* = 13.2, 7.2 Hz) and 2.07 (*dd*, 1H, *J* = 13.2, 3.6 Hz) were a group of corresponding protons. This showed the presence of part structure $^{14}\text{C} = ^{15}\text{CH} = ^{16}\text{CH}_2$. The signals at 4.29 (*ddd*, 1H, *J* = 10.7, 4.0, 2.6 Hz, CHOH) and 3.77 (*d*, 1H, *J* = 2.6 Hz, CHOH) were coupled with each other. This indicated two secondary hydroxy groups which should be placed at C-2 and C-3, respectively, in a *trans*-diaxial configuration ($J_{2\text{H}-3\text{H}} = 2.6$ Hz).

The position of the carboxyl group at C-17 and the double bond at the Δ^{14} -position was established from the mass spectral fragmentation pattern of przewanoic acid A (**1**). Compound **1** exhibited a fragment peak at m/z 316 (**1a**). This ion peak was accompanied by a peak 15 mass units lower (**1b**) which was formed by the loss of the allylically activated methyl group at C-8. Moreover, the mass spectrum of **1** showed a peak at m/z 232 (**1c**) derived from rings D and E. Furthermore, the fragment **1c** loses the carboxyl substituent at C-17 giving rise to a fragment base peak at m/z 187 (**1d**). This type of fragmentation is